The molten salt reactor (MSR) in generation IV: Overview and perspectives

Jérôme Serpa, Michel Allibert, Ondřej Benes, Sylvie Delpech, Olga Feynberg, Véronique Ghetta, Daniel Heuer, David Holcomb, Victor Ignatiev, Jan Leen Kloosterman, Lelio Luzzi, Elsa Merle-Lucotte, Jan Uhlíř, Ritsuo Yoshioka, Dai Zhimin

*CEA Marcoule, Nuclear Energy Division, Radiochemistry & Processes Department, SCPS/LEPS, F-30207 Bagnols-sur-Cèze, France

**European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 21400, 76125 Karlsruhe, Germany

†IPNO, Groupe Radiochimie, Univ. Paris Sud, Bât. 100, 91406 Orsay, France

‡LPS – IN2P3-CNRS/UJF/Grenoble INP, 53 rue des Martyrs, F-38026 Grenoble Cedex, France

§Oak Ridge National Laboratory, USA

‖National Research Centre “Kurchatov Institute”, Moscow, Russian Federation

§§Delft University of Technology (TU-Delft), Department of Radiation Science & Technology, Mekelberg 15, 2629 JB Delft, Netherlands

¶Politecnico di Milano, Department of Energy, Nuclear Engineering Division, via Ponzio 34/3, 20133 Milano, Italy

∥Research Centre Rež, Husinec — Rež 130, CZ-25068, Czech Republic

*International Thorium Molten-Salt Forum, Japan

∥∥Chinese Academy of Sciences, P.O. Box 800-204, 201800 Shanghai, People’s Republic of China

Article history:
Received 5 December 2013
Received in revised form 7 February 2014
Accepted 10 February 2014
Available online 7 March 2014

Keywords:
Molten salt reactor
Gen IV
Nuclear systems
Neutronic performance
Fuel cycle

Abstract
Molten Salt Reactors (MSR) with the fuel dissolved in the liquid salt and fluoride-salt-cooled High-temperature Reactors (FHR) have many research themes in common. This paper gives an overview of the international R&D efforts on these reactor types carried out in the framework of Generation-IV. Many countries worldwide contribute to this reactor technology, among which the European Union, France, Japan, Russia and the USA, and for the past few years China and India have also contributed. In general, the international R&D focuses on three main lines of research. The USA focuses on the FHR, which will be a nearer-term application of liquid salt as a reactor coolant, while China also focuses on solid fuel reactors as a precursor to molten salt reactors with liquid fuel and a thermal neutron spectrum. The EU, France and Russia are focusing on the development of a fast spectrum molten salt reactor capable of either breeding or transmutation of actinides from spent nuclear fuel.

Future research topics focus on liquid salt technology and materials behavior, the fuel and fuel cycle chemistry and modeling, and the numerical simulation and safety design aspects of the reactor. MSR development attracts more and more attention every year, because it is generally considered as most sustainable of the six Generation-IV designs with intrinsic safety features. Continuing joint efforts are needed to advance common molten salt reactor technologies.

© 2014 Elsevier Ltd. All rights reserved.

Abbreviations: CR, Conversion Ratio; EFPY, Equivalent Full Power Year; ISTC, International Science and Technical Centre, Moscow, Russia; ICC, Intergranular Cracking; LWR, Light Water Reactor; MA, Minor Actinides; MARS, Minor Actinides Recycling in Salts, Rosatom R&D project, 2010–2013, Russia; MOSART, Molten Salt Actinide Recycler Transforming system, developed at KI, Russia; MOX, Mixed Oxide fuel; MSBR, Molten Salt Breeder Reactor, developed in ORNL, USA; MSFR, Molten Salt Fast Reactor, developed in CNRS, France; MSR, Molten Salt Reactor; MSRE, Molten Salt Reactor Experiment, developed in ORNL, USA; REE, Rare Earth Elements; RW, Radioactive Waste; SNF, Spent Nuclear Fuel; TRU, Transuranic Elements; ORNL, Oak Ridge National Laboratory, USA; UOX, Uranium Oxide fuel.

*Corresponding author.

E-mail addresses: jerome.serp@cea.fr (J. Serpa), mallibert@orange.fr (M. Allibert), ondrej.benes@ec.europa.eu (O. Benes), delpech@ipno.in2p3.fr (S. Delpech), olga.feynberg@yandex.ru (O. Feynberg), Veronique.Ghetta@ipsc.in2p3.fr (V. Ghetta), Daniel.Heuer@ipsc.in2p3.fr (D. Heuer), HolcombDE@ornl.gov (D. Holcomb), ignatiev@pveckiae.ru (V. Ignatiev), J.L.Kloosterman@tudelft.nl (J.L. Kloosterman), lelio.luzzi@polimi.it (L. Luzzi), elsa.merle@ipsc.in2p3.fr (E. Merle-Lucotte), jan.uhlir.cvrez.cz (J. Uhlíř), ritsuo.yoshioka@nifty.ne.jp (R. Yoshioka), daizmin@ap.ac.cn (D. Zhimin).

http://dx.doi.org/10.1016/j.pnucene.2014.02.014

0149-1970/© 2014 Elsevier Ltd. All rights reserved.