The continued interest in nuclear power in several EU Member States and the increasing interest in emerging and developing economies create a growing demand for highly educated nuclear engineers and scientists in industry, research, technical safety and governmental organisations. A highly skilled and well informed workforce is essential to safely maintain the current civil nuclear reactor fleet, decommission obsolete plants, be involved in new build where policy dictates, and deal with legacy and future spent fuel. In view of this, education and training (E&T) in the field of Nuclear Science and Technology is a key component of the nuclear infrastructure worldwide.

Because of the specific infrastructure needed for opportunities for working with radioactive materials in practical quantities, over the past decades nuclear education and training have been the combined effort of universities and (inter)national laboratories in many countries.

In the light of this the members of the GENTLE consortium, a joint effort by leading academic and research institutions in Europe, contribute to a sustainable lifelong E&T programme in the field of nuclear fission technology that meets the needs of the European stakeholders from industry, research and technical safety organisations.

Specifically, the GENTLE project aims at the successful implementation of the following joint E&T tools:

- Student research experience (SRE) to facilitate students from the participating universities to get hands-on experience in Europe’s unique and specialised laboratories and participate in cutting-edge research.
- Intersemester courses (ISC) for graduate and post graduate students on specific industry related topics.
- A Massive Open Online Course (MOOC) on Nuclear Energy to train students and professionals in all theoretical and practical aspects involved in nuclear engineering.

The uniqueness of the GENTLE project lies in the facts that it offers high level education and training through a combination of top class teachers with Europe’s unique nuclear infrastructure, thus providing an exceptionally well informed holistic approach, that will help Europe to maintain its leading position in the nuclear fission field, and attract high quality students and young professionals from all over the world.

The Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory (ORNL) is an information analysis center that collects, archives, evaluates, synthesizes and distributes information, data and codes that are used in various nuclear technology applications. RSICC retains more than 2,000 software packages that have been provided by code developers from various federal and international agencies. RSICC’s customers (scientists, engineers, and students from around the world) obtain access to such computing codes (source and/or executable versions) and processed nuclear data files to promote on-going research, to help ensure nuclear and radiological safety, and to advance nuclear technology. The role of such information analysis centers is critical for supporting and sustaining nuclear education and training programs both domestically and internationally, as the majority of RSICC’s customers are students attending U.S. universities. Additionally, RSICC operates a secure CLOUD computing system to provide access to sensitive export-controlled modeling and simulation (M&S) tools that support both domestic and international activities. This presentation will provide a general review of RSICC’s activities, services, and systems that support knowledge management and education and training in the nuclear field.